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Static wetting on �exible substrates: a �nite
element formulation
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SUMMARY

In static wetting on an elastic substrate, force exerted by the liquid–vapour surface tension on a solid
surface deforms the substrate, producing a capillary ridge along the contact line. This paper presents
a �nite element formulation for predicting elastic deformation, close to the static wetting line (with
angle of contact = 90◦ and �SV =�SL). The substrate deformation is modelled with the Mooney–Rivlin
constitutive law for incompressible rubber-like solids.
At the contact line, a stress singularity is known to arise, due to the surface tension acting on a line

of in�nitesimal thickness. To relive the stress singularity, either (i) the surface tension is applied over a
�nite contact region (of macroscopic thickness), or (ii) the solid crease angle is �xed. These two options
suggest that normal component of Neumann’s triangle law of forces, for the three surface tensions, is
not applicable for elastic substrates (as for rigid ones). The vertical displacement of the contact line is
a strong function of liquid=vapour surface tension and shear modulus of the solid. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wetting is the process of displacing a vapour by a liquid, on a solid surface with the contact
line the line of intersection of solid, liquid and vapour phases [1, 2]. If neither the solid nor
the contact line is moving, wetting is called static. Under equilibrium conditions, static wetting
on a rigid solid involves the balance of three surface tension forces arising at the contact line.
Young’s equation is derived from a balance of forces parallel to the solid surface, and relates
the contact angle to the surface tensions:

cos �=
�SV − �SL

�LV
(1)
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Figure 1. Force balance around the contact line, on a control volume of radius r with unit normal ñ to
the surface. The dashed line represents the solid surface, before deformation.

where � is the contact angle [3], and, �SL, �SV and �LV are the solid=liquid, solid=vapour and
liquid=vapour surface tensions, respectively.
In addition to these three surface tensions, the elastic forces in the solid enter the force

balance at the static wetting line, for �exible solids.Figure 1 shows a control volume for
balancing forces at a wetting line:

cos ��LV = cos �(�SV − �SL)− fst (tangential component) (2a)

sin ��LV = sin �(�SV + �SL)− fsn (normal component) (2b)

where � and � are de�ned in Figure 1 (the dashed line shows a bisecting plane that is de�ned
such that the angle � is the same for the solid=vapour and the solid=liquid surfaces), fst and fsn
are, respectively, the tangential and normal components of the elastic force. In a rigid solid,
�=0, fst = 0, Equation (2a) or (1) is the tangential component of Neumann’s triangle law
of forces, and the normal component of the liquid–vapour surface tension is balanced by the
normal component of the elastic force, (Equation (2b)). In a �exible solid, the liquid–vapour
surface tension is balanced by both elastic force and solid surface tensions.
Several researchers [3–9] predicted substrate deformation near a static wetting line. Lester

[3] considered a weightless drop on a semi-in�nite solid and assumed a uniform normal
pressure in the interface layer, which he considered to be of molecular dimensions. Lester
showed that � depends on both the liquid=vapour surface tension and the modulus of the solid.
Rusanov [4] used a similar approach to calculate the displacement �eld, for a drop resting on a
�exible solid, but he included tangential interfacial stresses and gravity. Rusanov showed that
there is a kink at the contact line. Fortes [5] used the balance of surface tension and pressure
forces, for a weightless drop on a membrane, to obtain a relationship between the contact
angle and the surface tensions. Shanahan [6] used a balance of free energy, including gravity,
for a drop on a thin plate or a membrane, to obtain force balances at the static contact line.
He did not calculate the shapes of the drop and the solid. Kern and Muller [7] followed the
same approach, for a drop on a thin elastic solid, to solve for drop and solid pro�les. Olives
[8, 9] used a thermodynamic approach for obtaining equilibrium equations of capillarity and
elasticity, including gravity, for a drop on a thin plate, in which he not only included bending
but also stretching of plate, which was neglected by the previous researchers. He showed
that discontinuities in the elastic displacements arise at the contact line and showed that
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Young’s equation of force balance is not valid for �exible solids. In this paper, a novel
approach using numerical solution by the �nite element method is used to model static wetting
on �exible substrates, with non-linear large strain elasticity and �nite substrate thickness. The
numerical solution suggests that normal component of Neumann’s triangle law of forces, for
the three surface tensions, is not valid for �exible solids (as for rigid ones).
For deformable solids, a singularity arises at the contact line, due to the line force, which

results in in�nite displacement. In order to relieve this singularity in numerical predictions of
elastic deformation near a contact line, two conditions are considered, in this paper:

• Applying the line force over a �nite contact region.
• Applying a crease angle condition at the contact line.
The �rst condition (which results in �nite displacement) is based on the fact that surface

tension force acts over a �nite contact region of molecular dimensions, and not at a line. The
second condition, by its geometrical nature, also leads to a �nite displacement. In numerical
predictions, the �nite contact region arises from the discretization—i.e. size of the elements
adjacent to the contact line. An analytical model for �nite displacement, due to a distributed
force over a �nite contact region, is also presented in this paper. This option has been extended
for modelling dynamic wetting on �exible substrates [10].
These physical considerations are elaborated upon in the �rst section of the paper. The

second section of the paper describes the model formulation, the boundary conditions applied
to the momentum equations and the mesh motion scheme, for the test case. The third section
describes the �nite element formulation, application of boundary conditions, method of solving
the non-linear equations and mesh re�nement studies. The fourth section discusses the �nite
element solution, the analytical model for a distributed force at the contact line, and the results
from applying the crease angle condition and the distributed line force condition.

2. PHYSICAL THEORY OF STATIC WETTING ON FLEXIBLE SUBSTRATES

2.1. Model formulation

The model formulation for static wetting on �exible substrates is applied to a liquid con-
tained between two �exible plates. The system analysed consists of a 2D deformable planar
elastomeric slot, as shown in Figure 2(a), which is attached to a rigid solid and immersed
in a liquid. The wetting liquid rises up in the gap between the two solids and achieves an
equilibrium state of static wetting. The �exible solid, with assumed negligible body forces,
deforms under the action of capillary pressures at the solid=vapour and solid=liquid surfaces,
and surface tension forces at the wetting line (hydrostatic pressures being neglected). By
symmetry, only one of the two solids needs to be analysed (Figure 2(b)).
In the solid domain, the displacement �eld is described by Cauchy’s equilibrium equa-

tion. This equation can be written in dimensionless form, in the Eulerian reference frame, as
follows:

∇ · TS =0 (3)

where TS is the dimensionless stress tensor (stress tensor divided by the shear modulus
G). The Mooney–Rivlin constitutive law [11] is used as the stress–strain relationship for a
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Figure 2. (a) Model formulation of static wetting, for a liquid between two capillary �exible plates.
� is the crease angle. Other parameters are de�ned in the paper. (b) Computational domain, where

L is the thickness of the solid.

rubber-like solid:

TS = (−ps − 2fG +G)I+ fB− (1− f)B−1 (4)

which contains the isotropic pressure term (divided by G) and the stress term resulting from
the deformation, I is the identity tensor, f a constant ranging between 0 and 1, and B=FFT

the left Cauchy–Green deformation tensor. By setting f=1, the neo-Hookean constitutive
law is obtained from Mooney–Rivlin constitutive law. Since the problem is two-dimensional,
the deformation gradient tensor, F, is given as follows in terms of the displacements
u (x-component) and v (y-component), in deformed co-ordinates:

F=



1− @v

@y
@u
@y

@v
@x

1− @u
@x


 (5)
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Since the solid is incompressible, a constant, −(2f−1)I, needs to be added to the above con-
stitutive law, in order to make the solid stress go to zero when the displacement goes to zero.
The conservation of volume in the solid is expressed by

|F|=det F=1 (6)

This completes the formulation of �eld equations of the test problem. Boundary conditions are
needed to solve the above model, which include momentum balances along the solid=liquid
and solid=vapour interfaces, boundary conditions on the other solid boundaries, as shown in
Figure 2(a), and the boundary conditions at the contact line. The boundary conditions and the
mesh motion scheme are discussed in the following sections.

2.2. Boundary conditions

Along the solid=vapour and solid=liquid interfaces, the stress is assumed to be normal to the
surface (i.e. ñ · Ts is parallel to ñ) and the boundary condition balances the normal stress in
the solid, external pressure and surface tension in the interface (Laplace equation, as for a
�uid/�uid interface). The external pressure pext is assumed to be zero (in the liquid and in
the vapour).
solid=vapour interface:

−̃n · TS = ñ · pextI+ 2H ñ
CaESV

; CaESV =
GL
�SV

(7)

solid=liquid interface:

−̃n · TS = ñ · pextI+ 2H ñ
CaESL

; CaESL =
GL
�SL

(8)

where ñ is the outer normal to the solid, L is the thickness of the solid domain, H is the
surface mean curvature (multiplied by L; H¡0 if the solid surface is concave), CaESV and
CaESL are the solid=vapour or solid=liquid elastic capillary numbers, respectively, �SV and �SL
the solid=vapour and solid=liquid surface tensions, respectively. The elastic capillary numbers
scale the signi�cance of the elastic forces in the solid to the surface tensions.

2.3. Force balance at the contact line

The forces acting in the vicinity of the contact line are balanced over a circular-shaped control
volume, as shown in Figure 1. Assuming negligible pressures in the gas and liquid phases,
the three surface tensions which act tangent to the interfaces and the stress from the solid
enter the force balance. By shrinking the pillbox, i.e. as r tends to zero, the force balance for
static wetting takes the following form:

fs + m̃LV�LV + m̃SV�SV + m̃SL�SL =0 (9)

fS = lim
r→0

∫ �SL

�SV
ñ · �TSr d� (10)

where fs is the force in the solid due to elastic stress, �TS =GTS is the dimensional stress
tensor, ñ is the outer normal to the control volume, �SV and �SL are the angular locations of
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the solid=vapour and solid=liquid surfaces, respectively; m̃LV, m̃SV and m̃SL are tangent to the
liquid=vapour, solid=vapour and solid=liquid interfaces, respectively, at the contact line.
Equation (9) represents the new form of force balance at the contact line, for static wetting

on �exible substrates. The singular force in the solid needs to be relieved in order to obtain
a �nite solution; with this aim in view, special boundary conditions at the contact line are
required, as discussed in the next section.

2.4. Boundary conditions at the contact line
In this paper, the following case is used for all numerical solutions: the liquid=vapour surface
tension acts along the y-direction (�=90◦) and �SV =�SL. There are two options for applying
boundary conditions at the contact line, within the numerical solution:

• Crease angle condition, which �xes the value of � (Figure 2(a)):
m̃SL · m̃SV = cos� (11)

• Distributed line force condition, which considers the liquid=vapour surface tension force
distributed over a �nite contact region.

The crease angle condition, by its geometrical nature, leads to a �nite displacement of
the contact line. Applying distributed liquid=vapour surface tension force over a �nite contact
region also relieves the singularity, resulting in a �nite displacement (see the analytical model,
Section 4.2.2).

2.5. Mesh motion scheme
The mesh motion scheme used in this paper is pseudo-solid mesh motion [12–15]. This
belongs to the class of ALE method, where the mesh moves independent of the underlying
solid (see also Reference [10]). The nodes are moved as though they behave as an elastic
solid, by solving Cauchy’s equation of equilibrium subject to boundary deformation, resulting
from the solution of the real solid deformation �eld.

2.6. Boundary conditions on the mesh
In the following, the x-direction will be called ‘horizontal’ and the y-direction ‘vertical’.
The horizontal and vertical displacements of the mesh are set to zero on the rigid support
boundaries of the domain. On the rigid solid boundary, shear free boundary condition is
applied on the horizontal displacement and the vertical displacement of the mesh is set equal
to zero. The solid=vapour and solid=liquid free surfaces are assumed to be shear free and the
vertical displacement of the mesh is set equal to the vertical displacement of the �exible solid
(Lagrange mesh). At the contact line, the horizontal displacement of the mesh is set to zero
and its vertical displacement is set equal to that of the solid.

3. GALERKIN FINITE ELEMENT FORMULATION

3.1. Residual calculations in the �nite element method

The coupled system of equations and boundary conditions involving free surfaces is non-linear,
making it di�cult to get an analytical solution, and hence, the numerical �nite element method
(FEM) is used. FEM approximates the solution in each element to be the product of the nodal
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unknowns and the basis functions. The single-phase problem in this paper requires solving
for the solid displacements, mesh positions and pressure in the solid. The basis functions for
the displacement and the pressure are chosen to be biquadratic and bilinear, respectively. The
basis functions for pressure are of one order less than those for displacement, in order to
satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition [16].
The displacement �elds are given by

u=
n∑

i=1
ui�i(x; y); v=

n∑
i=1

vi�i(x; y) (12)

in which �i(x; y) are the biquadratic basis functions and n is the number of nodes, in an
element where u and v are calculated.
Similarly, the pressure �eld in an element is given by

pS =
m∑
i=1

pSi i(x; y) (13)

where  i(x; y) are the bilinear basis functions and m is the number of nodes.
The momentum equation is weighted with the biquadratic basis function and then integrated

by parts to get a weighted residual:

Rm
i =

∫
V
(∇ · TS)�i dV =−

∫
V
(∇�i · TS) dV +

∫
S
�i (̃n · TS) dS (14)

The incompressibility constraint is also weighted using the bilinear basis function:

Rci =
∫
V
(|F| − 1) i dV =

∫
V
(|I − ∇u|−1 − 1) i dV (15)

The second term in Equation (14) is a boundary integral, which can be evaluated from
boundary conditions. For the capillary conditions (7)–(8), the boundary integral term can be
expressed in terms of surface divergence [17] and added to the residual. The details of this
derivation are provided in Reference [14].

3.2. Momentum balance in the vicinity of the contact line

The weighted residual of the momentum equation, integrated over all the elements near the
contact line (see Figure 3), is

∫
Vs
(∇ · �TS)�SCL dV =0 (16)

where �SCL is the weighting function that corresponds to the node at the static contact line.
Integrating by parts, Equation (16) gives

∫
VS
(∇ · �TS)�SCL dV =−

∫
VS

�TS · ∇�SCL dV +
∫
S
ñ · �TS�SCL dS (17)
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Figure 3. Balance of momentum in the vicinity of the static contact line.

where ñ is the outer normal to VS. The surface integral can be split into contributions from
the solid=liquid and solid=vapour interfaces and from the contact line, because of singularity
(see Figure 3):

∫
VS
(∇ · �TS)�SCL dV =−

∫
VS

�TS · ∇�SCL dV +
∫
SSV
ñ · �TS�SCL dS +

∫
SSL
ñ · �TS�SCL dS

+
∫
SSCL
ñ · �TS�SCL dS +

∫
SS
ñ · �TS�SCL dS (18)

The last term in Equation (18) drops out because �SCL =0 along the boundary SS. SSCL
represents a small patch of surface inside the solid, in the vicinity of the static contact line.
The integral over SSCL is equal to −fs, as SSCL goes to zero (Equation (10) with opposite ñ).
The integrals SSV and SSL over can be expressed, using Equations (7)–(8) and integrating by
parts in terms of surface tension gradients:

∫
V

∇ · �T�SCL dV =−fs − m̃SV�SV − m̃SL�SL −
∫
VS

�TS · ∇�SCL dV

−
∫
SSL

�SL∇s�SCL dS −
∫
SSV

�SV∇s�SCL dS (19)

where ∇s is the surface gradient operator [17]. The sum of the �rst three terms is equal to
m̃LV�LV, according to Equation (9):

∫
VS
(∇ · �TS)�SCL dV =−

∫
VS

�TS · ∇�SCL dV −
∫
SSL

�SL∇s�SCL dS

−
∫
SSV

�SV∇s�SCL dS + m̃LV�LV (20)
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Plate 1. (a) Comparison of the free surface of the solid (co-ordinates x=L; y=L), with 16 elements, 24 el-
ements and 28 elements (in the x-direction). Comparison of contour plots of (b) pressure, (c) horizontal
displacement and (d) vertical displacement, for 24 elements (solid areas) versus 28 elements (dash–
dot lines). The parameters Lx=L=18, f=1, crease angle condition �=150◦, and CaESV =CaESL =10
are used for this comparison. The minimum and maximum pressure contour levels are set at −450
and 0, respectively (number of levels= 16). The minimum and maximum horizontal displacement
(u=L) contour levels are set at −0:005 and 0.005, respectively (number of levels= 11). The min-
imum and maximum vertical displacement (v=L) contour levels are set at −0:002 and 0.02,
respectively (number of levels= 11). The same scale for the x and y co-ordinates is used in

Plates 1(b)–4(d) (and y-thickness=L).
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Plate 2. (a) Comparison of the free surface of the solid (co-ordinates x=L; y=L), with 8 elements versus 10
elements (in the y-direction). Comparison of contour plots of (b) pressure, (c) horizontal displacement
and (d) vertical displacement, for 8 elements (solid areas) versus 10 elements (dash–dot lines). The

same notations, values for parameters and the contour levels were used as in Plate 1.
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Plate 3. Contour plots of (a–b) pressure (the full domain is shown in (a)), (c) horizontal displacement
and (d) vertical displacement, using the crease angle condition �=90◦, and CaESV =CaESL =20 (f=1).
The maximum and minimum pressure contour levels are at 50 and −1050, respectively (number of
levels= 12), the value at the contact line being −1056. The maximum and minimum horizontal dis-
placement contour levels are at 0.013 and −0:013, respectively (number of levels= 14), the value at
the contact line being 10−3. The maximum and minimum vertical displacement contour levels are at
0.08 and 0, respectively (number of levels= 21), the value at the contact line being 0.0865. Same scale

along x and y, in Plates 1(b)–4(d) and y-thickness=L in all the �gures.
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Plate 4. Contour plots of (a–b) with pressure (the full domain is shown in (a)), (c) horizontal dis-
placement and (d) vertical displacement, using the distributed line force condition with CaELV =14
and CaESV =CaESL =20 (f=1). The maximum and minimum pressure contour levels are at 20 and
−480, respectively (number of levels= 11), the value at the contact line being −480. The max-
imum and minimum horizontal displacement contour levels are at 0.006 and −0:006, respectively
(number of levels= 25), the value at the contact line being 3:9× 10−4. The maximum and mini-
mum vertical displacement contour levels are at 0.03 and 0, respectively (number of levels= 16),
the value at the contact line being 0.036. Same scale along x and y, in Plates 1(b)–4(d) and

y-thickness=L in all the �gures.
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i.e. in dimensionless form (with co-ordinates x=L; y=L):
∫
VS
(∇ · TS)�SCL dV =−

∫
VS
TS · ∇�SCL dV −

∫
SSL

1
CaESL

∇s�SCL dS

−
∫
SSV

1
CaESV

∇s�SCL dS + m̃LV 1
CaELV

(21)

where CaELV =GL=�LV is the elastic capillary number for the liquid=vapour surface.

3.3. Application of boundary conditions

In a two-dimensional model, Cauchy’s equation of equilibrium results in two momentum
residual components. The continuity equation is a scalar equation which determines pressure.
The boundary conditions on the momentum equations are applied, either by adding the stress
(second term in Equation (14)) to the momentum equation (weak form) or by replacing the
entire momentum residual by the boundary condition, as a Dirichlet condition (strong form).
The capillary boundary conditions shown in (7)–(8) and the distributed line force con-

dition are applied in the weak form. The rigid solid and rigid support boundary conditions
(Figure 2(a)) and the crease angle condition are applied as Dirichlet conditions.

3.4. Method of solving the non-linear residual equations

The discretized equations resulting from applying the Galerkin FEM are a system of non-
linear algebraic equations. These equations are linearized using the Newton’s method [12, 18]
and the resulting matrix is solved for updates of the variables, using a sparse solver [19].
The numerical integration is performed by Gaussian quadrature, using four Gauss points, in
each direction. A structured mesh of quadrilateral elements with stretching is implemented.
The elements are more concentrated and �attened (in the x-direction) near the contact node,
their sizes being symmetrically arranged on both sides of the contact node.

3.5. Convergence test to determine the optimum number of elements

Mesh re�nement was conducted to make the �nite element solution independent of the mesh.
The elements are more �attened (in the x-direction) towards the contact node, according to

�x1 =
Lx

2

(
1− �
1− �ne

)
;�x2 = ��x1;�x3 = ��x2; : : : ;�xne = ��xne−1

where �x1 is the x-size of the �rst element (at the contact node), �x2 that of the second
element and so on, Lx is the x-dimension of the solid domain, ne half the number of ele-
ments in the x-direction, and � the stretching parameter. For �¿1, the sizes increase, from
the �rst element to the last one. In the following, dimensionless co-ordinates (x=L; y=L) and
displacements (u=L; v=L) will be used.
The criterion for convergence is that the free surface shape of the solid for distance greater

than about 0:5L to be insensitive to mesh re�nement. This criterion is chosen because the
outer solution (i.e. deformation at a distance greater than 0:5L) is more relevant for macro-
scopic static wetting problems. Hence, it is expected that for converged solution with mesh
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Table I. Convergence test for mesh re�nement, with di�erent number of elements in x-direction. Pa-
rameters Lx=L=18, f=1, �=150◦ and CaESV =CaESL =10. The reported element size is that of the

element to the left of the contact line.

Number of elements Size of the smallest element Vertical displacement
(x × y) (�x ×�y) of contact node

12× 8 0:7378× 0:125 0.0658714
16× 8 0:403× 0:125 0.0487248
20× 8 0:2308× 0:125 0.0389942
24× 8 0:1356× 0:125 0.0332679
28× 8 0:0808× 0:125 0.0298642
32× 8 0:0485× 0:125 0.0278943
36× 8 0:0293× 0:125 0.0268415
40× 8 0:0177× 0:125 0.0263328

re�nement, the outer solution does not change signi�cantly. Furthermore, mesh re�nement
cannot converge with the distributed line force condition (as seen from Equation (23)); it
will only converge if the element sizes adjacent to the contact node are held constant as
shown in Reference [10]. Hence, the crease angle boundary condition is used for the conver-
gence test. The tests are performed for the case of Lx=L=18, f=1, crease angle of 150◦ and
solid=liquid and solid=vapour elastic capillary numbers of 10. First, the number of elements
in the x-direction is changed, keeping that in the y-direction constant. Plate 1(a) shows that
the free surface shapes, when the elements in the x-direction are changed from 16 to 24 ele-
ments and then to 28 elements, are almost the same. Plates 1(b)–1(d) compare the contours
for pressure, horizontal displacement and vertical displacement, respectively, for 24 elements
versus 28 elements, and they almost match up with each other. Moreover, Table I shows that
there is a small change, i.e. of the order of 10−3, in the predicted vertical displacement of the
contact line, for a change of elements from 24× 8 to 40× 8 in the domain. From the above
study, it can be concluded that 24 elements in the x-direction is the optimum number of ele-
ments, for convergence. On the right side of the contact line (or vapour side; see Figure 2(a)
and 2(b)), � is set to 1.27, which gives �x1 = 0:1463 (at the contact node). On the left side
(or liquid side), similar value �= 1

0:78 is chosen, leading to �x1 = 0:1356.
The next step is to keep the number of elements in the x-direction constant and change that

in the y-direction. Plate 2 shows that changing the number of elements from 8 to 10, there is
negligible change in the free surface shape, contours of pressure, horizontal displacement and
vertical displacement. The change in the vertical displacement of the contact line was of the
order of 10−4, when the number of elements was changed from 24× 8 to 24× 10, as shown
in Table II. Hence, from the above study, eight elements are chosen in the y-direction.

4. RESULTS AND DISCUSSION

4.1. Finite element solution for the base case

The base case for the �nite element solution is chosen to be f=1; �=150◦, CaESV =CaESL
=10 (and Lx=L=18, for all numerical solutions). Plates 1 and 2 show the contours of pressure
and displacements, for the base case. The pressure decays to zero rapidly, away from the
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Table II. Convergence test for mesh re�nement, with di�erent number of elements in y-direction
�=150◦, and CaESV =CaESL =10. The same parameters and notations were used as in Table I.

Number of elements Size of the smallest element Vertical displacement
(x × y) (�x ×�y) of contact node

24× 2 0:1356× 0:5 0.0384879
24× 4 0:1356× 0:25 0.0347414
24× 6 0:1356× 0:166 0.033697
24× 8 0:1356× 0:125 0.0332679
24× 10 0:1356× 0:1 0.0330376

contact line. At the contact line, the pressure is negative because the solid is in tension.
The vertical displacement is a maximum at the contact node, because of the chosen crease
angle. The horizontal displacement is non-zero at the contact node, due to unequal element
sizes on either side of the contact line. The element size on the liquid side is smaller and
hence, the stress is higher, which pushes the contact node to the vapour side. The horizontal
displacement is positive on liquid side of contact line and negative on gas side (i.e. towards
the contact line). The dip seen in Plate 1(a) or 2(a), on either side of the contact line, is due
to the incompressibility constraint. The solid free surface asymptotically approaches a stress
free condition, at distances far away from the contact line.

4.2. Analytical models of stress near the contact line

4.2.1. Singularity at the static wetting line. In a continuum approximation, liquid=vapour
surface tension force acts on a line of the solid surface acts. At the contact line, in�nite
stress and displacement result, because of �nite force acting over in�nitesimal area, leading
to non-physical results. Timoshenko and Goodier [20], and others, showed the variation of
stress and displacement with the distance from the line of application. But, in reality, the
force acts over a �nite contact region of molecular dimensions, which relieves the singularity
and results in �nite stress and displacement. In the present FEM solution (with the distributed
line force condition), force is e�ectively distributed over a contact region, which corresponds
to the two elements adjacent to the contact node. Note that such a contact region, with
x-size (0:1356 + 0:1463)L=0:2819L, is of macroscopic (and not molecular) dimensions. The
following section gives an analytical solution of the displacement, for a force distributed over
a contact region.

4.2.2. Displacement �eld due to a distributed load. A semi-in�nite solid is subjected to the
normal force P (per unit length along the z-direction; see Figure 4), distributed over a contact
region of �nite extension 2a, with a uniform pressure load q:

q=
P
2a

(22)

The vertical displacement, at the mid-point of the contact region, is [20]

v=
−q(2a ln a)
2�G

=−P ln a
2�G

(23)
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Figure 4. Force P (per unit length along z-direction) acting over a semi-in�nite solid, and distributed
over a contact region of �nite extension 2a.
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Figure 5. Vertical displacement of the contact line, as a function of solid=liquid or solid=vapour elastic
capillary number, at f=1 and CaELV =1:4× 104 (distributed line force condition).

(see Appendix A, for the derivation). Note that this vertical displacement is �nite (and be-
comes in�nite as a→ 0). Nevertheless, there is an ambiguity in Equation (23), since ln a is
in fact ln a=R, where R is an arbitrary constant length (see Appendix A).

4.3. E�ect of elastic capillary number on vertical displacement of the contact line

The vertical displacement of the contact line is not a strong function of the solid=vapour or the
solid=liquid elastic capillary numbers, using the distributed line force condition, as seen from
Figure 5. The vertical displacement attains a constant value, at lower values of the solid=liquid
or solid=vapour surface tension. The magnitude of the vertical displacement is mostly a�ected
by the liquid=vapour surface tension (see Figure 9), as this force acts in the normal direction
to the solid surface.
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Figure 6. Vertical displacement of the contact line, as a function of parameter f, at �=150◦ (crease
angle condition), and CaESV =CaESL =10.

4.4. E�ect of Mooney–Rivlin constant on vertical displacement of the contact line

The e�ect of parameter f on the contact line displacement, has been studied at �=150◦

(crease angle condition), CaESV =CaESL=10. The results (Figure 6) show that the parameter
f does not have a signi�cant e�ect (relative change of around 7% with respect to f=1)
on the displacement, although the displacement is increasing with decrease in parameter f.
Hence, the value of f is chosen to be 1 for all the following parametric studies. For vulcanized
natural rubber, the value f=0:875 was used by several researchers in the past [21, 22].

4.5. Comparison of crease angle and distributed line force conditions

At the contact line on a rigid solid, Neumann’s triangle law of forces, applied to the three
surface tensions, is not valid for the normal component: indeed, the normal elastic force, fsn,
is needed, according to Equation (2b). In this section, the two boundary conditions, namely,
distributed line force and crease angle, are compared to show that normal component of
Neumann’s triangle law of forces, for the three surface tensions, is probably also not valid
for �exible substrates.
We consider the following case: CaESV =CaESL =20 (and f=1). With the crease angle

condition, we take �=90◦, and, with the distributed line force condition, CaELV =14, i.e.
�LV =

√
2�SV (with G=104 Pa and L=10−4 m, this leads to �LV =0:07 J m−2, the water=air

surface tension). This last value would be that of �LV, for �=90◦, if Neumann’s triangle law
of forces, for the three surface tensions, were valid (Equation (2b) with �=90◦, �=45◦ and
fsn = 0).
Plates 3–4 compare the pressure and displacement �elds, for these two conditions. With

the distributed line force condition, the crease angle is 138:29◦, which clearly di�ers from
90◦. The full Newton iteration converges for a crease angle above 145◦, (Continuation of
Newton’s method, where the solution at one set of conditions is used as an initial guess
to the next set of conditions, can be used to go down as low as 30◦). In addition, the
magnitudes of the pressure and the displacements are di�erent, for the two conditions. Then,
if the action of the liquid=vapour surface tension is correctly modelled with the distributed line
force condition (although it is distributed over a macroscopic and not molecular thickness),
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Figure 7. Angle � (rotation of the solid=liquid and solid=vapour interfaces) as a function of 1=CaELV,
at CaESV =CaESL =10 (distributed line force condition; f=1).

the normal component of Neumann’s triangle law of forces, for the three surface tensions, is
probably not valid for �exible solids.

4.6. Angle � as a function of shear modulus and surface tension

Lester [3] gave the following relationship between �, Young’s modulus and surface tension:

�= tan−1
(
4�LV(1− �2)

�	ER

)
(24)

where 
 is the Poisson’s ratio, E the Young’s modulus, R the radius of curvature of the
liquid=vapour interface and 	 the ratio thickness of interface to the radius of droplet. Thus,
	R=2a= thickness of liquid=vapour interface with E=3G, 
=0:5 (neo-Hookean law, small
strain, incompressible), and 2a=L=(0:1356+0:1463)=0:2819 (see Section 4.2 and Appendix
A), it gives

tan �=
1

�(2a=L)CaELV
=1:13[CaELV]−1 (25)

The angle � is a function of shear modulus and liquid=vapour surface tension, as shown in
Figure 7. The tangent of � is a linear function of inverse of liquid=vapour elastic capillary
number, at lower values of �, but with a slope of 2.86, higher than the value of 1.13 of Equa-
tion (25). This may be due to uniform distribution of surface tension over the contact region
of thickness 2a (Equation (23)), whereas, in the distributed line force condition (Figure 7),
there is a non-uniform distribution, i.e. over a smaller ‘e�ective contact region’. In addition,
the relation deviates from linearity at smaller values of CaELV, which could be due to the
assumption of small strain (linearity), in Lester’s [3] analysis.
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Figure 8. Vertical displacement of the contact line as a function of crease angle, at CaESV =CaESL =10
(Crease angle condition; f=1).
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Figure 9. Vertical displacement of the contact line as a function CaELV, for analytical model versus
FEM, at CaESV =CaESL =10 (distributed line force condition; f=1).

4.7. E�ect of crease angle

The vertical displacement is a strong function of the crease angle � (and of angle �, since
2�+�=180◦), as seen in Figure 8. As the crease angle is decreased, the vertical displacement
increases. It is possible that vertical displacement goes to in�nity at crease angle of zero.

4.8. Comparison of analytical model and FEM

There is an ambiguity in the analytical model, due to the arbitrary constant length R, in the
logarithm terms, such as r=R (see Section 4.2.2 and Appendix A). Nevertheless, if the value
R=L is chosen, the vertical displacement for varying liquid=vapour elastic capillary number,
determined from the analytical model (Equation (A7) of Appendix A) compares qualitatively
well with the predictions of the FEM, as shown in Figure 9, but quantitatively the solution
from the analytical model is smaller. As in Section 4.6, one source of discrepancy is that, at
large surface tension, FEM solution deviates from linearity (large strain elasticity), whereas
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the analytical model is linear (small strain). Another discrepancy is that analytical model
assumes the surface tension is distributed uniformly over the contact region of thickness 2a
(=0:2819L; see Section 4.6 and Equation (A7)), whereas in FEM, the surface tension is
non-uniformly distributed i.e. over a smaller ‘e�ective contact region’.

5. CONCLUSIONS

This paper presents a �nite element formulation to model static wetting on �exible substrates
(with angle of contact �=90◦, and �SV =�SL). There is a singularity arising at the contact
line due to the line force. Two boundary conditions were explored to relieve the singular-
ity, namely, crease angle condition and distributed line force condition over a �nite contact
region (of macroscopic thickness; in reality, the surface tension acts on a contact region of
molecular dimensions). It is known, from analytical models, that the line force acting on
solid results in in�nite displacement, whereas applying a distributed force over a �nite con-
tact region leads to a �nite displacement. These numerical approaches suggest that normal
component of Neumann’s triangle law of forces, for the three surface tensions, is not valid
for �exible substrates (as for rigid ones). The liquid=vapour elastic capillary number has a sig-
ni�cant impact on the displacement of the contact line, unlike the solid=vapour or solid=liquid
elastic capillary numbers. With decrease in liquid=vapour elastic capillary number, this dis-
placement decreases increases and the crease angle decreases. The e�ect of the parameter f
(of Mooney–Rivlin constitutive law) on the displacement is small. The FEM solution is in
good qualitative agreement with comparable analytical solutions (although these ones present
some ambiguities). Quantitative discrepancies may be due to (i) non-linearity and (ii) ‘smaller
e�ective contact region’, in FEM.
The formulation could be a great asset to the coating industry, where many coating methods

such as slot coating, slide coating, etc. involve static wetting at corners. The results give an
idea of the order of displacements observed in �exible solids under static and equilibrium
conditions, which could be useful information for performing experiments on contact angle
and crease angle. The model developed in this paper has been extended to study dynamic
wetting on �exible substrates [10].

APPENDIX A

The displacement �eld for a distributed load of intensity q acting over a �nite contact region,
as shown in Figure 4, is obtained by superposing the solutions for cases I and II shown in
Figure A1. For case I, normal stresses A� and −A�, respectively, act on the left side and
the right side of the origin O, and a shear stress −A on the whole surface. The corresponding
Airy stress function � [20] and the stress �eld are

�= Ar2� (A1)

�r =
1
r
@�
@r
+
1
r2

@2�
@�2

= 2A�
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2a, between the two lines Oz and O1z. r and � are the polar co-ordinates with respect to

O, r1 and �1 those with respect to O1.

�� =
@2�
@r2
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�r� =− @
@r

(
1
r
@�
@�

)
=−A

Indeed, the value of �� is A� for �=�=2, and −A� for �=−�=2.
For case III, the load intensity is q=2A�, so that

A=
q
2�

(A3)

The Airy stress function for case II is the same as that of case I, but with a negative sign, as
the stresses are acting in opposite direction. For case I, the displacement �eld can be obtained
by assuming linear neo-Hookean elasticity, small strain and incompressibility condition. In
the region y¡0 of the surface (right side of the origin O), the horizontal (y-component) and
vertical (x-component) displacements are, respectively:

u = 0

v =
−q(r ln r)
2�G

(A4)

The displacement for case II, in the region y¿−2a of the surface, is given by the same. The
displacement for case III, in between two points O and O1, is obtained by superposing the
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displacements for cases I and II:

u = 0

v =
−q(r ln r + r1 ln r1)

2�G

(A5)

For the mid-point between O and O1, the displacement �eld is then

v=
−q(2a ln a)
2�G

(A6)

Nevertheless, there is an ambiguity in Equations (A4)–(A6), since each logarithm, say ln r,
is in fact ln r=R, where R is an arbitrary constant length. For comparing with the �nite ele-
ment solution, r=0:1356 and r1 = 0:1463 are the element sizes (divided by L), respectively,
upstream and downstream of the contact node. For example, by choosing the value R=L,
Equation (A5) gives the following displacement (divided by L) of the contact node:

v=
�LV(0:1356 ln(0:1356) + 0:1463 ln(0:1463))

2�G(0:1356 + 0:1463)
=
0:311
CaELV

(A7)
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